A Personal Assistant Project

Informatics 201

SJSU

Esteban T'. Lopez
Professor : Dr. Benoit

October 11, 2020

Contents

1 Introduction
1.1 Project
1.1.1 Approach
1.1.2 SDLC

2 DSS Overview
2.1 DSS . .
2.1.1 UML Use Case
2.1.2 DSS Manager
2.1.3 DSS Pseudocode

3 Agile Iteration 1
3.1 DSS Foundation
3.1.1 DBMS
312 Uland MBMS
3.1.3 Summary of Iteration 1.

4 Agile Iteration 2
4.1 Health Module
4.1.1 Pseudocode for Initial Health Module
4.1.2 Future Iterations on Health Module
4.2 Final Thoughts
421 Experience.o
References
Glossary
List of Acronyms

List of Figures

2.1 DSS UML Use Case Diagram
3.1 UML Class DBMS Entry Diagram

i

List of Algorithms

1 DSS UL Entry 6
2 [Initial Health Module Overview 11
3 Body Composition oL 11
4 Range of Body Fat Percentages 11

iii

Chapter 1

Introduction

1.1 Project

A personal decision support system (DSS) that is focused on personal main-
tenance and goal setting. This is an attempt to concentrate a series of my
personal projects into a sort of personal content management system (CMS).
This is also an attempt by me to move beyond hack writing to the deliberate
analysis, planning, and organization of a complex project. (Hack writing
means haphazardly engineering software without adequate planning or best
practices, not the negative popular culture connotation of illegally breaking
into systems). The personal projects I have been tinkering and hacking on
are projects that many people have interest in. Though this is for personal
use, this could eventually be expanded for public use. This design will be
treated as a public or commercial software engineering project; Initially, it
will be for personal use. The basic categories are health, finances, and pro-
fessional /education. The design will allow for expansion of categories.

The initial concept of the user interface (UI) of this program is to have
tiles in a key performance indicator (KPI) graphical user interface (GUI) as
in a dashboard. The KPI tiles will show current states and trends. The
central idea is to see weight trends and body fat % trends for the health
category. Also debt and income trends for the financial category. For the
professional /education things like progress on degrees or certificates and up-
dating resume and job applications using education and career history. This
is an ambitious, but feasible project. This will be tackled modularly and in
phases; Taking advantage of hack writing skills but consolidated into a larger

1.1. PROJECT CHAPTER 1. INTRODUCTION

and managed project. The managed part is important not only for complet-
ing the project, but for future features. For example, a feature in health
showing calories needed and meals eaten analyzed against the finances of
cost and budget. This DSS will not be complete with this document, and
by nature, will never be completed. The Unified Modeling Language (UML)
will be attempted throughout this document. This document represents an
expansion of planning and organization skills as well as the support skill of
UML.

1.1.1 Approach

The philosophy of this project is to use the expertise and best practices of
professionals and academics to form and present a design of a personal soft-
ware project. The purpose is not to profess expertise in any methodology
of a software development life cycle (SDLC), of writing pseudocode, or of
diagramming. Basically, the approach here is to explain the software be-
ing developed, and using a personalized hybrid to get the project started,
organized, and developed.

1.1.2 SDLC

The main 2 types of software development life cycle (SDLC) that will be
used as models are Waterfall and Agile. In a sense, the existence of this
document is about planning beforehand; Waterfall. Waterfall is a SDLC that
emphasizes planning an entire project before beginning the programming.
Agile approaches SDLC in an iterative fashion. A robust defense of Waterfall
is not ever-present, usually Waterfall is invoked as a post against which
other SDLC approaches are measured and justified. Agile does not espouse
documentation. ”Working software over comprehensive documentation” is
a specific declaration of the Agile Manifesto (Layton and Ostermiller, 2017,
p. 22). Documentation definitely takes time away from writing working
software. Documentation gives a structure and deliberate design to working
software.

I have created many modules in many different languages with the in-
tention of creating a central conglomeration of working software. Writing
bits of code does produce working prototypes, but having a plan corrals the
elements to be used together in an organized way. The plan here is to use
Waterfall to organize and document this DSS. The software engineering will

1.1. PROJECT CHAPTER 1. INTRODUCTION

be tackled using Agile principles. Creating documentation and using UML
probably violates Agile principles just a little bit, or a lot. One of the "pla-
tinium principles” of Agile is "resisting formality” (Layton and Ostermiller,
2017, p. 36). While there will be documentation, the project will be split up
into Agile iterations. Agile splits up projects into iterations, parts of projects
are prioritized into different iterations and handled in sprints (Layton and
Ostermiller, 2017, p. 46). At the end of each sprint a fully functional piece of
software is delivered. This will be the approach here, but documentation and
optimization will be used since this is a personal project. This project design
will be slowed down by learning to diagram in UML,and pseudocode, while
learning Agile project management. The purpose is to not only organize this
labor of love, but to expand design and software engineering experiences.

As a side note, I did typeset this document in IXTEX; I wanted to feel like
I was programming while designing this document. It was a bit of a learning
curve, still on the curve. KTEX is open source, and allows for separation of
style and content (Kottwitz, 2011, pp. 10-11).

Chapter 2

DSS Overview

2.1 DSS

Any information system has a variety of models, DSS are no different. One
model represents a DSS as having a user, user interface (UI), database man-
agement system (DBMS), and model base management system (MBMS)
(Sauter, 2011). This high level abstraction will be used to present a UML
model as an overview of this DSS. The decision maker is the reason for this
particular DSS, especially the user creating the system in this case. While
the decision maker and UI is not the only part of the DSS, the following
UML use case diagram will be shown to illustrate a high level concept of this
system. The following diagram does not only show the UI, it is emphasized.
“To the decision maker the user interface is the DSS” (Sauter, 2011, p.215).
To the designer all the components of the DSS are the whole system.

2.1.1 UML Use Case

This DSS will basically have 3 general initial options for the decision maker.

1. Create an account
2. Login to account

3. Use modules without logging in

To maximize the use of the system, having an account with logged data
in the database will be required. However, the system will allow basic models

4

2.1. DSS CHAPTER 2. DSS OVERVIEW

be used and calculations be done without the benefit of previous data.The
UI will have to be managed in order to organize and integrate all components
of the DSS. As explained, the DSS has a decision maker that uses the Ul to
connect to the MBMS and with an account the DBMS.

The first entry point for a decision maker is to create an account. If
the account is created the decision maker can then login and use personal
historical information and enter new information. The decision maker with
an account will have access to modules and KPI dashboard.

Another option is for a decision maker to use modules without logging
in. They will not have access to database and historical information, and
MBMS modules that depend on historical information. But they will be able
to generate one time reports and perform some decision making analysis.

High Level UML Use Case Diagram

Decision Support System (DSS)

User Interface (UI) —]—

. Verify Login
~

n

Create Account

¢ ¢ Access Personal Data
| Update DBMS
; ~
! y
.
!

i ‘ ol
i Display Key Performance Y.~
i Indicators (KPI)
|
|
. £
Use Modules

Figure 2.1: DSS UML Use Case Diagram

Decision Maker MBMS

2.1. DSS CHAPTER 2. DSS OVERVIEW

2.1.2 DSS Manager

Even though the DSS is represented at a high level as having a decision maker
using the Ul with the DBMS and MBMS, there needs to be a manager. We
will call this the DSS manager. This is necessary to move beyond the high
level design and actually engineer a real program that can be controlled.
The high level design is very useful to diagram the DSS use case, but will
probably also be useful to diagram the DSS activity at a high level.

2.1.3 DSS Pseudocode

The pseudocode below is just to give an overall idea of how the DSS is
accessed. Treatment and project approach will be addressed.

Algorithm 1: DSS Ul Entry
if !Account then
Create Account
else if Account then
Login
Verify Account
Load Database Info
Display KPI
Allow Logging New Info to Database
Use Modules With Database Info
else {!Login}
Use Modules (M BMS) Without Benefit of Database Info
end if

Chapter 3

Agile Iteration 1

3.1 DSS Foundation

In a sense, Iteration 1 flies in the face of Agile principles. There will not really
be a completely useful piece of software after this iteration. It is a personal
project and ensuring that the components of the DSS are in place is essential.
The most important part, in order to be able to use historical information
to see trends and model results is having a database. This is also important
to scale up if this is made commercial, or even just to share with friends
and family. I have previously created a database to track substitute teaching
earnings and paydays, I did not plan ahead to add the ability for different
users apart from myself. It still needs refining, but this is an example of why
planning ahead for different possibilities is beneficial.

3.1.1 DBMS

DBMSs are usually modeled using Entity-Relationship (ER) models, but
can be modeled using UML class diagrams (Elmasri and Navathe, 2011, pp.
199-200). UML class diagrams have object-oriented programming in mind
(Hamilton and Miles, 2006, p. 65). The idea of having data tables and
having procedural language in the same graphical image is interesting. Since
this is a DSS, the procedural language feature might violate the conceptual
separation between DBMS and MBMS (see Figure 2.1). A simple UML class
diagram (see Figure 3.1) in order to set up a simple database is all that is
needed for the DBMS in Iteration 1. There are things to consider for future

3.1. DSS FOUNDATION CHAPTER 3. AGILE ITERATION 1

iterations, such as user address and phone number, user recovery email. But
this is not necessary for Iteration 1.

UML Class DBMS Entry

Password

password: varchar
password_creation: date_time
active: bool

User Login User
lemail: varchar user_id: int, auto_increment, primary_key
user_name: varchar user_creation_date: datetime

Name

[first_name: varchar
middle_initial: char
last_name: varchar
name_date: datetime

Figure 3.1: UML Class DBMS Entry Diagram

3.1.2 UI and MBMS

In order to make sure the framework is complete, a simple Ul and MBMS need
to be set up to test the DBMS. Simple tests using HTML forms with PHP
should be sufficient, possibly even database connection tests using Python.
The DBMS procedural language will be considered separate, and will be
written in separate scripts; It really is part of the DBMS, but does make
sense as a feature of the MBMS. The advantage of modular components is
being able to select different languages that users can use to interact with
the database and the models.

3.1.3 Summary of Iteration 1

In order to set up the DSS and get through Iteration 1 quickly the following
languages and systems will be used. The UI will be developed using localhost
browsers, so it will be developed using HTML, CSS, and Javascript at the
front-end. The back-end for the MBMS will primarily be PHP, but since the
goal is to have a fully functional DSS Python will be incorporated. Python

3.1. DSS FOUNDATION CHAPTER 3. AGILE ITERATION 1

is used for analytics and in order to make the program powerful, Python (or
C++) will have to be implemented. The final part will be to use MySQL
as the DBMS because a Linux operating system will be used and MySQL
is pretty standard. There is no real usable software, which violates Agile
principles; This is a very important component to get the rest going while
keeping it organized.

e Ul

— HTML
— CSS

— Javascript
e DBMS

— MySQL
e MBMS

— PHP
— Python

e Development Operating System

— Linux (Ubuntu)

Chapter 4

Agile Iteration 2

4.1 Health Module

Without going into the details of goal setting, this module is being created
with the intention of monitoring and making decisions on weight loss. This
could be used for weight gain or maintenance as well. The idea is to have
software that allows weight to be entered, along with body fat%, height,
weight, age, and sex. The output would show a range of body fat%, lean
body mass, fat only weight, body mass index, basal metabolic rate. The
DSS portion would allow for sensitivity analysis by seeing what caloric needs
would be based on the basal metabolic rates at different body weights, by
seeing the weights at different body fat percentages and body mass index.

4.1.1 Pseudocode for Initial Health Module

Algorithm 2 gives an overview of the information that would be provided to
the DSS and what the output should be. Not all the information is needed
for this iteration of the health module. The essential information is Weight
and Body Fat Percentage to calculate Fat Only Weight, Lean Body Mass,
and Weight at Range of Body Fat Percentages. Algorithm 3 shows the
formulas of how to arrive at Fat Only Weight and Lean Body Mass. Algo-
rithm 4 displays the way a list of Weight at Range of Body Fat Percentages
is created based off of Lean Body Mass. An Agile meeting would be able to
help fill out the rest.

10

4.1. HEALTH MODULE CHAPTER 4. AGILE ITERATION 2

Algorithm 2: Initial Health Module Overview
ENTER:
Weight
Body Fat Percentage
Height
Age
Sex
OUTPUT:
Weight at Range of Body Fat Percentages
Body Mass Index
Lean Body Mass
Fat Only Weight
Basal Metabolic Rate

Algorithm 3: Body Composition

Require: Weight > 0 A Body Fat Percentage > 0
DATA:
Weight
Body Fat Percentage
CALCULATE FAT:
Fat Only Weight = Weight * (Body Fat Percentage/100)
Lean Body Mass = Weight — Fat Only Weight
return Fat Only Weight \ Lean Body Mass

Algorithm 4: Range of Body Fat Percentages
Require: Lean Body Mass > 0
DATA:
Lean Body Mass
CALCULATE BODY FAT PERCENTAGES AND FILL
ARRAY OR LIST:
for i < 1 to 100 do
| Body Fat Arrayli]| = Lean Body Mass x (i/100)
end
return Body Fat Arrayl]

11

4.2. FINAL THOUGHTS CHAPTER 4. AGILE ITERATION 2

4.1.2 Future Iterations on Health Module

Concepts: Workout, blood pressure, diabetes, pain, temperature, oxygen,
sleep patterns, medication log, nutrition log, etc. Combined with financial
module and coordinating nutrition with expenses. The health module can be
a complete DSS, but as a personal assistant it would be nice if the program
enveloped many aspects of personal life; especially tedious things like health
and finances.

4.2 Final Thoughts

4.2.1 Experience

Learning how to diagram, write pseudocode, and design versus hack writing
has been an enlightening experience. I spent the last year substitute teaching
and design skills are very useful, and I believe can translate to teaching young
students and older students alike. I see parallel skills between teaching and
designing to direct and help software teams. I definitely learned alot about
typesetting in IXTEX, I believe I can connect more deeply with the plight
of 2nd graders struggling learn Google docs. While I am proud of being
able to write code, I believe helping others understand and work in tandem
would be euphoric. This experience has catapulted my technology skills into
a world that substitute teaching tugged me into. I appreciate diagramming,
pseudocode, and planning more than I ever have. I also appreciate the art
of inforgraphics and the deceptive ease with which they convey information.
I want to excel at conveying information to anybody, whether in teaching,
managing projects, or informatics. I am not there yet, but aspire to be.

12

References

Elmasri, R. and Navathe, S. B. (2011). Fundamentals of Database Systems
(6th Ed.). Addison-Wesley, Boston, MA.

Hamilton, K. and Miles, R. (2006). Learning UML 2.0. O’Reilly Media,
Inc., Sebastopol, CA.

Kottwitz, S. (2011). BTgXBeginner’s Guide: Create high-quality and
professional-looking texts, articles and books for business and science
using BTgX. Packt Publishing, Birmingham, UK.

Layton, M. C. and Ostermiller, S. J. (2017). Agile Project Management for
Dummies (2nd Ed.). John Wiley & Sons, Inc., Hoboken, NJ.

Sauter, V. (2011). Decision support systems for business intelligence (2nd
Ed.). Retrieved on September 13, 2020, from,
https://learning.oreilly.com/library /view /decision-support-
systems/9780470433744/.

13

Glossary

ETEX Is a mark up language specially suited for scientific documents. 3, 12

Agile The Agile software development life cycle (SDLC) is a project man-
agement style that delivers fully functional modules of software. Agile
prioritizes software features and delivers those first. 2, 3, 7, 9, 10

content management system A content management system (CMS) is
software that controls how information is created, stored, and retrieved.
1

dashboard A dashboard is a graphical user interface (GUI) that usually
displays key performance indicators (KPI’s). 1, 5

database management system A database management system (DBMS)
is a database with a SQL query system, and usually provides some sort
of procedural language support.. 4

decision support system A decision support system (DSS) is an informa-
tion system that gives a decision maker support. 1

graphical user interface A graphical user interface (GUI) is a user friendly
way to interact with software. 1

key performance indicator A key performance indicator (KPI) is a mea-
sure and is usually used as a tile with many KPI’s on a dashboard. A
few KPI examples for this project is: how much do I weigh today, or
the weight average for the last week. 1

14

Glossary Glossary

model base management system A model base management system (MBMS)
is just where the models and programs are stored. This is an entirely
new concept to this author as of this writing. It is unclear if there is any
comprehensive MBMS, for example is Keras or Tensorflow considered
an MBMS. 4

pseudocode Conceptual code that is written to convey the overall concept
of an algorithm or piece of code. This is not strict coding language,
but is widely used to explain concepts and design in the manner of
code. Many beginning programming and algorithm textbooks use pseu-
docode, there is no universal standard; that would defeat the purpose.
Textbooks usually explain their own standard. 2, 3, 6, 12

software development life cycle A software development life cycle (SDLC)
is a project management approach to developing software. There are
many SDLC approaches. Two prominent frameworks are waterfall and
agile. 2

Unified Modeling Language The Unified Modeling Language (UML) is
an attempt to standardize a general purpose visualization and diagram-
ming of programming and softwarehardware systems. 2

user interface A user interface (UI) is the way a user interacts with soft-
ware. A popular Ul is a web browser with buttons, usually called a
graphical user interface (GUI). Not all UI’s are GUI'’s. 1, 4

Waterfall The Waterfall software development life cycle (SDLC) is a project
management style that has every step planned out with a substantial
amount of detail before beginning a software project. This approach
produces and delivers a complete software project. 2

15

List of Acronyms

CMS content management system. 1, Glossary: content management sys-
tem

DBMS database management system. 4-9, Glossary: database manage-
ment system

DSS decision support system. 1, 2, 4-8, 10, 12, Glossary: decision support
System

GUI graphical user interface. 1, Glossary: graphical user interface

KPI key performance indicators. 1, 5, 6, Glossary: key performance indi-
cator

MBMS model base management system. 4-9, Glossary: model base man-
agement system

SDLC software development life cycle. 2, Glossary: software development
life cycle

UI user interface. 1, 4-6, 8, 9, Glossary: user interface

UML Unified Modeling Language. 2-4, 7, Glossary: Unified Modeling Lan-
guage

16

